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Abstract
The method of pseudopotentials within the generalized gradient approximation
has been employed to calculate the phase stability, electronic structure and
elastic constants of β , α′′ and ω metastable phases in the Ti–25 at.% Nb
alloy. The bulk, shear and Young’s moduli of those metastable phases
are estimated from the theoretical elastic constants by the Voigt–Reuss–Hill
averaging method. The results show that the phase stability of those different
metastable phases follows the order of α′′ > ω > β from the viewpoint of
energetic and electronic structure. The bulk moduli of β , α′′ and ω phases are
close, but the shear and Young’s moduli increase with β , α′′ and ω phase in that
order.

1. Introduction

The phase transformation in titanium metals and alloys has been investigated extensively in
theory and experiment. At ambient pressure, titanium metal crystallizes in a hexagonal close
packed structure (α) with space group P63/mmc (No. 194) at room temperature but transforms
to a body centered cubic phase (β) with space group Im3̄m (No. 229) at high temperature.
A series of reversible phase transformations (α → ω, δ, γ ) induced by high pressure were
reported in titanium metals [1–3]. The electronic transfer between the broad sp-band and the
narrow d-band is the driving force for the phase transformation. Alternatively, similar electronic
effects on the phase transformation can be achieved by alloying with d-electron rich neighbors
such as V, Nb, Mo and Ta [4]. The addition of these d-electron rich elements stabilizes the
β phase at low temperatures. In addition, three kinds of metastable phase transformation
(β → α′, α′′ and ω) have been reported in the β stabilized titanium-based alloys [5]. The
α′ martensite is hexagonal as is the α titanium, and α′′ martensite has orthorhombic structure
with space group Cmcm (No. 63), which forms upon rapid cooling from the β phase. The
ω phase with hexagonal structure and space group P6/mmm (No. 191) has been identified in
titanium-based alloys slowly quenched from the β phase or isothermally aged at intermediate
temperatures.
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Because of low elastic modulus, good biocompatibility and long lifetime in the human
body, the β stabilized titanium-based alloys containing Nb, V, Mo and Ta transition elements
have been studied as load-bearing orthopaedic implants [6–8]. Recently it has also been
reported that the shape memory effect and superelasticity can be achieved in those alloys [9, 10].
It is known that the elastic and other mechanical properties of the titanium-based alloys are
determined by the mechanical property of their individual phase and by their phase constituents.
Thus, the phase transformation can be used to optimize microstructure and to improve physical
and mechanical properties of the alloys. However, to our knowledge there are few theoretical
studies so far on the elastic properties of β , α′′ and ω metastable phases in the titanium-based
alloys. In this paper we use the method of pseudopotentials within the generalized gradient
approximation to calculate the phase stability, electronic structure and elastic property of β , α′′
and ω metastable phases in the Ti–25 at.% Nb alloy. Based on the equilibrium phase diagram
of Ti–Nb the β , α′′ and ω phases with the composition of Ti–25 at.% Nb are metastable.
The alloys with chemical composition near Ti–25 at.% Nb have been suggested to be of low
Young’s modulus and promising shape memory effect and superelasticity among the Ti–Nb
alloys [10, 11].

2. Computational details

First-principles calculations of the phase stability, electronic structure and elastic properties
of metastable β , α′′ and ω phases in the Ti–25 at.% Nb alloy were performed using the
method of the ultrasoft pseudopotential method [12]. Exchange and correlation effects are
treated within the density functional theory (DFT) using the generalized gradient approximation
(GGA) proposed by Perdew et al [13]. In constructing the pseudopotentials, 3s, 3p, 3d, 4s states
and 4s, 4p, 4d, 5s states are chosen as the reference states for Ti and Nb atoms, respectively. A
kinetic cutoff energy of 400 eV and a k-point spacing of 0.04 Å

−1
are chosen. The Pulay charge

mixing method is adopted to accelerate the convergence [14]. The system energy is minimized
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to determine the equilibrated
lattice constants and internal atomic coordinates [15]. Each calculation is considered to be
converged when the energy difference was less than 1 × 10−6 eV/atom and the maximum
forces on the atom were below 2 × 10−3 eV Å

−1
.

In the calculation of the β Ti–25 at.% Nb alloy, the D03 structure with the space group
Fm3̄m (No. 225) was used, where the unit cell contains eight conventional bcc unit cells. The
atomic positions are 4a(0, 0, 0) and 8c(0.25, 0.25, 0.25) sites for Ti and 4b(0.5, 0.5, 0.5) site
for Nb, respectively. For the α′′ martensite phase, the unit cell with orthorhombic structure and
space group Pmm2 (No. 25) was employed. The atomic positions are (0, 0, 0), (0.5, 0.5, 0),
(0, 0.6, 0.5) for Ti and (0.5, 0.1, 0.5) for Nb, respectively. In the calculation of the ω phase, a
2×2×1 supercell was used with space group P6/mmm (No. 191). The different cell structures
are shown in figure 1.

3. Results and discussion

The structures were firstly optimized to determine the equilibrium lattice constants and internal
atomic coordinates for β , α′′ and ω metastable phases. The fits to the calculated total energy
as a function of volume for the different phases are presented in figure 2, in which the Birch–
Murnaghan equation of state is expressed as

E = a + bV − 2
3 + cV − 4

3 + dV −2, (1)
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(a)

(b)

(c)

Figure 1. The cell structures for the β phase (a), α′′ phase (b) and ω phase (c), where small spheres
represent Ti atoms and larger spheres represent Nb atoms.

where E and V are the total energy and the volume under pressure, respectively. It is seen
from figure 2 that the phase ordering at the equilibrium volume is α′′, ω and β phase with
increasing total energy. The calculated equilibrium lattice constants of β , α′′ and ω phases
in the Ti–25 at.% Nb alloy are summarized in table 1. It can be seen from table 1 that the
equilibrium lattice constant of the β phase is 3.260 Å, which agrees well with the experimental
one of 3.287 Å [10]. This value is also very close to the other theoretical calculation of
3.273 Å [11]. The lattice constants of the α′′ martensite phase (a, b, c) are calculated to be
3.307, 4.761 and 4.438 Å, respectively. On the other hand, the lattice constants of the α′′
martensite phase of the Ti–25 at.% Nb alloy were recently determined experimentally to be
3.19, 4.80 and 4.64 Å by Kim et al [10]. Their studies also showed that the lattice constants
of the α′′ martensite phase strongly depend on the Nb content of the alloys. The theoretical
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Figure 2. The total energy as a function of volume for the different phases in the Ti–25 at.% Nb
alloy.

Table 1. Equilibrium lattice constants (Å) and cohesive energies (eV/atom) of the β, α′′ and ω

phases in the Ti–25 at.% Nb alloy.

Lattice constants

Phase a b c Cohesive energy

β 3.260 7.240
3.273a

3.287b 7.236
α′′ 3.307 4.761 4.438 7.269

3.19b 4.80b 4.64b 7.253
ω 4.658 2.790 7.243

a Reference [11].
b Reference [10].

a axis in this work is longer and the c axis shorter compared with the experimental results. The
discrepancy between theoretical and experimental lattice constants is probably related to the
strain constraints of the β matrix to the α′′ metastable phase during the process of the β → α′′
martensite transformation. The theoretical lattice constants of the ω phase (a, c) are 4.658 and
2.790 Å, respectively. The cohesive energies of β , α′′ and ω phases were also calculated in this
work and are shown in table 1. It is shown that the cohesive energies of β and α′′ phases
calculated using theoretical lattice constants are slightly larger than those calculated using
experimental lattice constants. The calculated cohesive energies are close among β , α′′ and
ω metastable phases, and follow the order of α′′ > ω > β . This implies that the phase stability
follows the same order of α′′ > ω > β from the viewpoint of energetics. These calculations of
the ground state are consistent with the experimental observations on the phase transformations.
For example, the β → α′′ martensite transformation and β → ω phase transformation have
already been reported in the Ti–Nb alloys [5, 10]. In the following calculations, experimental
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Figure 3. The electronic structures of the β phase (a), α′′ phase (b) and ω phase (c) in the Ti–25 at.%
Nb alloy.

lattice constants were used for β and α′′ phases, while theoretical lattice constants for the ω

phase were used due to lack of experimental ones for the ω phase in the Ti–25 at.% Nb alloy.
The electronic structures of β , α′′ and ω metastable phases in the Ti–25 at.% Nb alloy

were calculated additionally. The densities of states (DOS) of those different phases are shown
in figure 3. The DOS curve of the β phase is almost the same as that reported by Ikehata
et al [11]. Clearly, there is a pronounced pseudogap between the low-energy bonding and high-
energy anti-bonding regions for the β phase. However, the Fermi level is located in the bonding
region of the DOS spectrum, resulting in a high value of the DOS at the Fermi level of 2.44
states per eV and atom. This means that the phase stability of the β structure is relatively low in
the Ti–25 at.% Nb alloy. In contrast, although there is no clear pseudogap in the DOS spectra
for α′′ and ω phases, the DOSs at the Fermi level for both structures are 1.64 and 1.65 states
per eV and atom, respectively. These values of the DOS at the Fermi level are much lower than
that of the β structure, which implies the α′′ and ω phases are more stable than the β phase in
the Ti–25 at.% Nb alloy.
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Table 2. Calculated elastic constants (GPa) of the β, α′′ and ω phases in the Ti–25 at.% Nb alloy.

Phase C11 C12 C13 C22 C23 C33 C44 C55 C66

β 117.29 105.62 19.90
128.5a 115.5a 14.9a

α′′ 129.89 91.12 126.81 148.22 69.32 135.59 28.38 23.13 39.65
ω 162.15 124.94 84.78 234.29 22.28 18.61

a Reference [11].

Elastic constants are determined by calculating the stress tensors on applying strains to the
equilibrium structure. In order to calculate the elastic constants of the cubic structure, the strain
mode of ε11 and ε23 is used. For the orthorhombic structure, the unit cell is deformed by three
different strain modes, whose nonzero strains are as follows: (1) ε11 and ε23, (2) ε22 and ε31, and
(3) ε33 and ε12. For the hexagonal structure, two different strain modes are used, whose nonzero
strains are as follows: (1) ε33, (2) ε11 and ε23. Table 2 shows the calculated results of the elastic
constants of β , α′′ and ω phases in the Ti–25 at.% Nb alloy. It can be seen from table 2 that
the elastic constants of C11 and C12 of the β phase are in good agreement with the theoretical
result in the literature [11]. However, C44 shows little difference from that calculated by Ikehata
et al [11]. The experimental and/or theoretical values of the elastic constants for the α′′ and
ω phases could not be found for a comparison with the present calculated results. Moreover,
the elastic stability of β , α′′ and ω phases can be analyzed by the elastic constants. For the
cubic, orthorhombic and hexagonal structure, the elastic stability requires the elastic constants
to satisfy the following conditions, respectively [16].

C44 > 0,

C11 + 2C12 > 0,

C11 − |C12| > 0

Cii > 0 (i = 1–6),

C22C33 − C2
23 > 0,

(2)

2C12C13C23 − C2
12C33 − C2

13C22 > 0, (3)

C44 > 0,

(C11 + C12)C33 − 2C2
13 > 0,

C11 − |C12| > 0.
(4)

From the elastic constants shown in table 2, it is known that all of the β , α′′ and ω metastable
phases are elastically stable.

From these theoretical results of the elastic constants, the bulk modulus B , shear modulus
G and Young’s modulus E of β , α′′ and ω metastable phases in the Ti–25 at.% Nb alloy can be
estimated. The elastic moduli in table 3 are Hill’s averages, which is the arithmetic mean of the
Voigt average and the Reuss average [17]. In the Voigt average, the shear modulus is given by

Gv = C11 − C12 + 3C44

5
, (5)

while in the Reuss average it is given by

GR = 5

4S11 − 4S12 + 3S44
, (6)

6
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Table 3. Calculated elastic moduli (GPa) of β, α′′ and ω phases in the Ti–25 at.% Nb alloy.

Phase B G E

β 109.51 12.20 35.29
119.8a 10.69a 31.14a

α′′ 105.10 16.46 46.93
ω 127.24 26.99 75.62

a Reference [11].

where Si j is the inverse matrix of Ci j with the relations C44 = S−1
44 , C11 − C12 = (S11 − S12)

−1

and C11 + 2C12 = (S11 + 2S12)
−1. The Young’s modulus is given by

E = 9G B

G + 3B
, (7)

From table 3, it is seen that the bulk modulus of the β phase is very close to the theoretical
result achieved by Ikehata et al [11]. But the shear and Young’s moduli are slightly higher than
those calculated by Ikehata et al [11]. It is also seen that the bulk moduli are close for β , α′′
and ω phases in the Ti–25 at.% Nb alloy. Thus, it can be deduced that the bulk modulus is not
a dominant factor in the reduction of the elastic moduli of Ti–Nb alloys. However, the shear
and Young’s moduli of β , α′′ and ω phases are very different. The shear and Young’s moduli
increase with the β , α′′ and ω phase in order in the Ti–25 at.% Nb alloy.

It has been widely accepted that the ω phase has the highest Young’s modulus in the
titanium-based alloys with different alloying elements [5]. However, there is a discrepancy
for the elastic modulus of the β phase and α′′ martensite phase in those alloys [18–22]. The
present calculations theoretically confirmed that the ω phase has the highest Young’s modulus
among β , α′′ and ω metastable phases, and the α′′ martensite has higher Young’s modulus than
the β phase in the Ti–25 at.% Nb alloy. Therefore, in titanium alloy design for low elastic
modulus, the addition of several atomic percentage of alloying elements is required to suppress
the occurrence of the α′′ and ω phases. On the other hand, the precipitation hardening effect of
the ω phase can be used to increase the critical stress of the slip deformation of the Ti–Nb alloys
because of its high elastic modulus, and thus large recovery strain and stable superelasticity can
be achieved in the Ti–Nb alloys with fine ω precipitates.

4. Conclusions

In summary, the phase stability, electronic structure and elastic constants of the β , α′′ and
ω metastable phases in the Ti–25 at.% Nb alloy have been calculated by first-principles
calculations based on the ultrasoft pseudopotential method within GGA. The bulk, shear
and Young’s modulus of those metastable phases were estimated from the theoretical elastic
constants by the VRH method. The calculated results of the energetics and electronic structures
showed that the phase stability follows the order of α′′ > ω > β . The bulk moduli of β , α′′ and
ω phases are close, but the shear and Young’s moduli of β , α′′ and ω phases are very different.
The shear and Young’s moduli increase with the β , α′′ and ω phase in order in the Ti–25 at.%
Nb alloy.
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